Asymptotic Nature of First Order Neutral Delay Difference Equation

Chittaranjan Behera, Prayag Prasad Mishra, Radhanath Rath

Abstract

In this paper, the presence of non oscillatory solutions having asymptotic nature of the 1st order NDDE with variable coefficients and delays are contemplated. Some new adequate conditions are given. Specifically, conditions given in this paper are adynamic than those known, so the outcomes in this paper have more extensive application than the current ones.

Keywords

Nonoscillatory solution, asymptotic nature ,First order, Neutral, Delay difference equation, Variable coefficients.

1 Introduction

The investigation of the asymptotic and oscillatory conduct of the solutions of delay difference equations exhibits a solid hypothetical intrigue. Beside the mathematical intrigue, the investigation of those conditions is persuaded by their applications. Delay difference equations emerge in a few regions of connected science, counting circuit hypothesis, bifurcation examination, populace flow, delay difference equations are utilized as a part of the examination of PC systems containing lossless and in mobile communication[24].

In this article, we investigate on the following $1^{\text {st }}$ order delay difference equation with variable coefficient.

$$
\begin{equation*}
\Delta\left(z_{n}\right)+p_{n} G\left(y_{\sigma(n)}\right)=f_{n}, n \geq n_{0} \quad \text {,Where } \tag{1}
\end{equation*}
$$

(2) $z_{n}=y_{n}-p_{n} y_{\tau(n)},<f_{n}>,<p_{n}>$ are real sequence,
$<q_{n}>$ is a positive real sequence. $G(x)$ is a continuou function from R to R such that $x G(x)>0 . \sigma(n), \tau(n)$ are monotonic increasing function such that $\sigma(n) \leq n$, $\tau(n) \leq n$
Our result hold for $f_{n}=0$.That is

$$
\begin{equation*}
\Delta\left(z_{n}\right)+p_{n} G\left(y_{\sigma(n)}\right)=0, n \geq n_{0} \tag{*}
\end{equation*}
$$

We assume the following conditions for the our work in the sequel.
(C1) G is nondecreasing
(C2) $\left|\sum_{n=0}^{\infty} f_{n}\right|<\infty$
(C3) $\sum_{n=0}^{\infty} q_{n}=\infty$
(D1) $0 \leq p_{n} \leq p<1$

$$
\text { (D2) }-1<-p \leq p_{n} \leq 0
$$

(D3) $-d \leq p_{n} \leq-c<-1$

$$
\text { (D4) } 1 \leq c \leq p_{n}<d
$$

Where p, c, d are positive real numbers

2 THE MAIN RESULTS

Recently there are many results are published concerning oscillatory and non oscillatory of first order differential equations. Some fundamental lemma's are presented here (see [8],[9],[23])

Lemma:1
(C0) $x G(x)>0$ for $x \neq 0$

Let y_{n} be a real sequence for $n \geq n_{0}$ such that y_{n} is negative for large n and $\tau(n) \leq n$ is an unbounded strictly increasing function.Then
(i) $y_{n}<y_{\tau(n)}$ for large n,implies $\lim _{n \rightarrow \infty} \sup y_{n} \neq 0$
(ii) $y_{n}>y_{\tau(n)}$ for large n,implies y_{n} is bounded.

Remark:1

Let y_{n} be a real sequence for $n \geq n_{0}$ such that y_{n} is positive for large n and $\tau(n) \leq n$ is an unbounded strictly increasing function.Then
(i) $y_{n}>y_{\tau(n)}$ for large n, implies $\liminf _{n \rightarrow \infty} y_{n} \neq 0$
(ii) $y_{n}<y_{\tau(n)}$ for large n,implies y_{n} is bounded.

Remark:2

Since $F_{n}=\sum_{i=n}^{\infty} f_{i}$,therefore $\lim _{n \rightarrow \infty} F_{n}=0$ by (C2). Hence $\lim _{n \rightarrow \infty} w_{n}=0=\lim _{n \rightarrow \infty} z_{n}=0$

Lemma :2

If y_{n} is a negative real sequence for $n \geq \alpha$, such that it is bounded. Then there exists a subsequence of points $\left\{n_{m}\right\}$ such that $m \rightarrow \infty \Rightarrow\left\{n_{m}\right\} \rightarrow-\infty$ and $\left\{y_{n_{m}}\right\} \rightarrow-\infty$ and $\left\{y_{n_{m}}\right\}=\min \left\{y_{n}: \alpha \leq n \leq n_{m}\right\}$

Lemma: 3

Suppose that $\tau(n)$ is a continuous monotonically increasing unbounded function such that $\tau(n) \leq n$.Let $\left\{u_{n}\right\},\left\{v_{n}\right\}$ be real sequence for $n \geq n_{0}$ such that $u_{n}=v_{n}-p v_{\tau(n)}, n \geq \tau_{-1}\left(n_{0}\right)$, where is the inverse function of $\tau, p \in R$ and $p \neq-1$
Assume that $\lim _{n \rightarrow \infty} u_{n}=l \in R$ exists. Then the following statements are holds good.
(i) $\quad \lim _{n \rightarrow \infty} \inf v_{n}=a \in R$ then $l=(1-p) a$
(ii) $\quad \lim _{n \rightarrow \infty} \sup v_{n}=b \in R$ then $l=(1-p) b$

Theorem: 2.2.41

Assume that y_{n} is an eventually negative solution of (1).Let (C0-C3) hold and set
(3) $w_{n}=z_{n}+F_{n}$ and
(4) $F_{n}=\sum_{i=n}^{\infty} f_{i}$

Then the following statement are true.
(a) w_{n} is an eventually increasing sequence.
(b) Suppose that $f_{n} \geq 0$.If $p_{n} \geq 1$ then $w_{n}>0$
(c) If $0 \leq p_{n} \leq 1$ then $w_{n}<0, \limsup _{n \rightarrow \infty} y_{n}=0$ and $\lim _{n \rightarrow \infty} w_{n}=0$

Proof:
(a)

From (1) and (3) we obtain,
(5) $\Delta w_{n}=\Delta\left(z_{n}+F_{n}\right)$

$$
=\Delta\left(y_{n}-p_{n} y_{\tau(n)}\right)=-q_{n} G\left(y_{\sigma(n)}\right) \geq 0
$$

So Δw_{n} is eventually increasing sequence.
(b)

Suppose $\quad p_{n} \geq 1$, Since $\quad f_{n} \geq 0$ so $F_{n} \geq 0$.To prove that $w_{n}>0$.If not let $w_{n} \leq 0$.Then from (2.1a) it implies that $Z_{n} \leq 0$.That is $y_{n}-p_{n} y_{\tau(n)} \leq 0$.This implies that $y_{n} \leq p_{n} y_{\tau(n)}$.Since $p_{n} \geq 1$ and y_{n} is negative so $p_{n} y_{\tau(n)} \leq y_{n}$.Hence $y_{n} \leq p_{n} y_{\tau(n)} \leq y_{n}$

By lemma (1(i)), $\limsup _{n \rightarrow \infty} y_{n} \neq 0$. That is y_{n} is bounded above by a negative constant say m . That is $y_{n}<\mathrm{m}$ for $n \geq n_{0}$. This implies

$$
y_{\tau(n)}<m \text { for } n \geq n_{1}
$$

$$
\Rightarrow G\left(y_{\tau(n)}\right)<G(m)
$$

$$
\Rightarrow-q_{n} G\left(y_{\tau(n)}\right) \geq-G(m)
$$

It is true since (C1) holds good.
$\operatorname{From}(5) \Delta w_{n} \geq-q_{n} G\left(y_{\tau(n)}\right)$. Taking summation of both sides from N to $\mathrm{n}-1$, we get,
$\sum_{i=N}^{n-1} \Delta w_{n} \geq-\sum_{i=N}^{n-1} q_{n} G\left(y_{\tau(n)}\right)$
$\Rightarrow w_{n}-w_{N} \geq-G(m) \sum_{i=N}^{n-1} q_{i} \rightarrow \infty$ as $n \rightarrow \infty$

So $\lim _{n \rightarrow \infty} w_{n}=\infty$, which contradicts the fact that w_{n} is non increasing sequence. for large n.So our assumption is wrong.

Hence $w_{n}>0$
(c)
Let $0 \leq p_{n} \leq 1$. Since w_{n} is increasing
$\lim _{n \rightarrow \infty} w_{n}=l \quad$,where $\quad-\infty<l \leq \infty \quad$.Then
$\lim _{n \rightarrow \infty} F_{n}=0 \Rightarrow \lim _{n \rightarrow \infty} w_{n}=\lim _{n \rightarrow \infty} z_{n} \quad$. If $\quad l=\infty \quad$ then
$\lim _{n \rightarrow \infty} z_{n}=\infty \quad \Rightarrow z_{n}>0$ for large n.So
$y_{n}-p_{n} y_{\tau(n)}>0 \Rightarrow y_{n}>p_{n} y_{\tau(n)} \geq y_{\tau(n)} \quad$,since $p_{n} \leq 1$.

Therefore by remark (1) y_{n} is bounded and consequently $\quad w_{n}$ is bounded , a contradiction to the fact that $l=\infty$. Thus $-\infty<l<\infty$. Now we claim that
(6) $\limsup _{n \rightarrow \infty} y_{n}=0$.Otherwise there exist N and α such that $y_{n}<\alpha<0$ for $n \geq N$.Taking summation from N to $n-1$ in (5), we obtain,
$\sum_{i=N}^{n-1} \Delta w_{i} \geq-\sum_{i=N}^{n-1} q_{i} G\left(y_{\sigma(i)}\right)>-G(\alpha) \sum_{i=N}^{n-1} q_{i}$
$\Rightarrow \lim _{n \rightarrow \infty}\left(w_{n}-w_{N}\right)>\lim _{n \rightarrow \infty}-G(\alpha) \sum_{i=N}^{n-1} q_{i}>\infty$
$\Rightarrow \lim _{n \rightarrow \infty} w_{n}>\infty \Rightarrow l=\infty$
Which is a contradiction .Hence our claim holds.So $\lim _{n \rightarrow \infty} Z_{n}=0$

Consequently $\lim _{n \rightarrow \infty} w_{n}=0$. Hence $w_{n}<0$, because it is increasing .This completely the proof.

Theorem :2

Suppose that $f_{n} \geq 0$. Let $p_{n}=p \neq 1$.Suppose (C0-C3) holds.If y_{n} be an eventually negative solution of (2.1).Set w_{n} as in (3).Then the following statements hold.
(a) w_{n} is an increasing sequence and either
(7) $\lim _{n \rightarrow \infty} w_{n}=\infty \quad$ or,
(8) $\lim _{n \rightarrow \infty} w_{n}=0$
(b) The following statements are equivalent
(i) $\lim _{n \rightarrow \infty} w_{n}=\infty$
(ii) $p_{n}>1$
(iii) $\lim _{n \rightarrow \infty} y_{n}=-\infty$
(C) The following statements are equivalent.
(i) $\quad \lim _{n \rightarrow \infty} w_{n}=0$
(ii) $\quad p<1$
(iii) $\lim _{n \rightarrow \infty} y_{n}=0$

Proof:
(a)

From (1) and (3) ,we obtain (5) .Which clearly indicates w_{n} is monotonic increasing Sequence.Hence, $\lim _{n \rightarrow \infty} w_{n}=l$ or $\lim _{n \rightarrow \infty} w_{n}=\infty$. If l is finite then $\lim _{n \rightarrow \infty} Z_{n}=l$. Next we prove that $\limsup _{n \rightarrow \infty} y_{n}=0$.As in the proof of previous Theorem (2), then by lemma (4) we get $\lim _{n \rightarrow \infty} Z_{n}=0$
$\Rightarrow l=0$. So proof of $\operatorname{part}(\mathrm{a})$ is complete.
(b)

Let (i) holds good. That is $\lim _{n \rightarrow \infty} w_{n}=\infty$. By the use of (C2) we obtain $\lim _{n \rightarrow \infty} z_{n}=\infty$.That is $\lim _{n \rightarrow \infty}\left(y_{n}-p_{n} y_{\tau(n)}\right)=\infty$. Note that $p_{n}=p$.Then clearly it follows that p must be negative and y_{n} must be bounded. Therefore by lemma (2), there exist $\quad n^{*} \geq n_{0} \quad$ such that $y_{n}^{*}=\min \left\{y_{k}, k \leq n^{*}\right\}$.Then
$0<z_{n}^{*}=y_{n^{*}}-p_{n} y_{\tau\left(n^{*}\right)}<y_{n^{*}}-p_{n} y_{n^{*}}=(1-p) y_{n^{*}}$
.Since,
$p-1>0 \Rightarrow p>1$

Therefore (i) implies (ii)
Let (ii) holds that is $p>1$.By (a) either (7) holds or (8) holds .If (8) holds then we conclude that $w_{n}<0$ as w_{n} is increasing. Since $F_{n}>0$, therefore by (3) we get $z_{n}<0$ for large n .

Thus $y_{n}<p_{n} y_{\tau(n)} \leq y_{\tau(n)} \Rightarrow \quad \limsup _{n \rightarrow \infty} y_{n}<0$
,by lemma (1.5.1).But as at (6) we can show $\lim _{n \rightarrow \infty} \sup y_{n}=0$, which is a contradiction. Hence we are left with a possibility of (7) only .From this and (C2), it follows that $\lim _{n \rightarrow \infty} Z_{n}=\infty$.
Further we have $z_{n}<-p y_{\tau(n)}$.Hence
$y_{\tau(n)}<\frac{z_{n}}{-p} \Rightarrow \limsup _{n \rightarrow \infty} y_{n}>\lim _{n \rightarrow \infty} \frac{z_{n}}{-p}=-\infty$,so
$\lim _{n \rightarrow \infty} y_{n}=-\infty$, and (iii) is proved.
Next to prove (iii) implies (i).
Let $\lim _{n \rightarrow \infty} y_{n}=-\infty$. There fore for some $m<0$, there exist N such that $n \geq n_{1}, y_{n}<m<0$.

$$
\Rightarrow \quad \sum_{n=N}^{\infty} q_{n} G\left(y_{\sigma(n)}\right)<\sum_{n=N}^{\infty} q_{n} G(m) \rightarrow-\infty
$$

But if w_{n} is bounded then $\sum_{n=N}^{\infty} q_{n} G\left(y_{\sigma(n)}\right)>-\infty$
.Which is a contradiction. Hence w_{n} is unbounded. Therefore $\lim _{n \rightarrow \infty} w_{n}=-\infty$.So by part (a) , part(b) proof is over.
(c)

Let (i) hold, that is $\lim _{n \rightarrow \infty} w_{n}=0$.From the fact that w_{n} is monotonic increasing, so we get $w_{n}<0$,since $f_{n} \leq 0$.Therefore from (3) we get $z_{n}<w_{n}$, hence $z_{n}<0$. Assume if possible $p \geq 1 \Rightarrow y_{n}<p_{n} y_{\tau(n)} \leq y_{\tau(n)}$,so by lemma (1), $\Rightarrow y_{n}<m$ for some $m<0$. Hence, $\sum_{n=N}^{\infty} q_{n} G\left(y_{\sigma(n)}\right) \rightarrow \infty$ by (C3) But as $\lim _{n \rightarrow \infty} w_{n}=0$ by taking summation of (5) $\sum_{n=N}^{\infty} q_{n} G\left(y_{\sigma(n)}\right)>-\infty$. Which is a contradiction .So $p \geq 1$ is impossible. Thus (ii) holds good.

Next to show that (ii) \Rightarrow (iii).
Let (ii) holds That is $p<1$. Then two cases arises , $p \leq 0$ or $p \in(0,1)$. Let $p \leq 0$. Now we claim that y_{n} is bounded sequence. Otherwise w_{n} is unbounded. By part (a) of this lemma, we have (7) holds. Again by part(b) of this lemma, $p>1$. Which is a contradiction. Hence our claim holds and $\limsup _{n \rightarrow \infty} y_{n}$ and $\lim _{n \rightarrow \infty} \inf y_{n}$ exists. By part (a) it is clear that (8) holds. Thus $\lim _{n \rightarrow \infty} Z_{n}=0$ by remark (2). Applying lemma (1), we get $\lim _{n \rightarrow \infty} y_{n}=0$.

Next consider $p \in(0,1)$, we claim that (8) holds.Otherwsie by part(a) wee that (7) holds.So $\lim _{n \rightarrow \infty} z_{n}=\infty \Rightarrow z_{n}>0$ for large n. Hence $y_{n}-p_{n} y_{\tau(n)}>0 \Rightarrow y_{n}>p_{n} y_{\tau(n)} \geq y_{\tau(n)} \quad$ (since $\quad y_{n} \quad$ is negative).So y_{n} is bounded by lemma (1). This implies w_{n} is bounded, which is a contradiction. Hence (2.228) holds.This implies that $\lim _{n \rightarrow \infty} Z_{n}=0$.Then we claim that y_{n} is bounded ,Otherwise by lemma (2), we find a sequence $\left\{n_{m}\right\}$ such that $m \rightarrow \infty \Rightarrow\left\{n_{m}\right\} \rightarrow \infty$ and $\left\{y_{n_{m}}\right\} \rightarrow \infty \quad$ and $\quad\left\{y_{n_{m}}\right\}=\min \left\{y_{n}: n_{1} \leq n \leq n_{m}\right\}$. Note that by remark (2.12), there exist some $\alpha>0$ such that $\left|F_{n_{m}}\right|<\alpha \in R$. $w_{n_{m}}=y_{n_{m}}-p y_{\tau\left(n_{m}\right)}+F_{n_{m}}<(1-p) y_{n_{m}}+\alpha \rightarrow-\infty$ as $n \rightarrow \infty$.Which is a contradiction .So y_{n} is bounded.This implies $\limsup _{n \rightarrow \infty} y_{n}$ and $\lim _{n \rightarrow \infty} \inf y_{n}$ exists .Then
applying Lemma (3) we obtain $\lim _{n \rightarrow \infty} \sup y_{n}=0$ Thus $\lim _{n \rightarrow \infty} y_{n}=0$.

Hence (ii) \Rightarrow (iii).
Next to show (iii) \Rightarrow (i).

Let $\lim _{n \rightarrow \infty} y_{n}=0$.To show that $\lim _{n \rightarrow \infty} w_{n}=0$. Clearly y_{n} is bounded.This implies W_{n} is bounded. So by part(a) $\lim _{n \rightarrow \infty} w_{n}=0$,because (7) cannot hold. So the proof of (i) is over.

Lemma:4

Let (C0),(C1) and (C3) holds good and $p \neq-1$.Then $p_{n}=p<1$ iff every nonoscillatory solutions of the $\operatorname{NDDE}\left(2^{*}\right)$ tends to zero as $n \rightarrow \infty$

Lemma:5

Suppose that (C0) ,(C2) and (C3) holds good.
(i) If p_{n} satisfies one of the conditions (D1),(D2) or (D3) then every solution of (1) oscillates or tends to zero as $n \rightarrow \infty$
(ii) If p_{n} satisfies (D4) then every bounded solution of (1) oscillates or tends to zero as $n \rightarrow \infty$

3 ILLUSTRATIVE EXAMPLES

In this section, two examples are given to illustrate our theorems.

$$
\begin{equation*}
\Delta\left(y_{n}-\frac{1}{2 \pi} y_{n-2}\right)+\frac{2 \sqrt{\pi}-1}{2 \pi^{\alpha / 2}} y_{n-\alpha}=0, \alpha>0 \tag{9}
\end{equation*}
$$

Here $p=\frac{1}{2 \pi} \in(0,1), \tau(n)=n-2, \sigma(n)=n-\alpha$
$q=\frac{2 \sqrt{\pi}-1}{2 \pi^{\alpha / 2}}$, which satisfies (C3), $f_{n}=0$
Here $z_{n}=w_{n}=-\frac{1}{2} \pi^{-n / 2}<0$ and $w_{n} \rightarrow 0$ as $n \rightarrow \infty$
Clearly $y_{n}=-\pi^{-n / 2}$ is a solution of (9)

This example illustrates Theorem (1 part(a) implies part (c)),Theorem(2 part (a) implies part(c)),Lemma (4),(5 (i)).

Example:- 2

(10)

$$
\Delta\left(y_{n}-2 y_{n-\alpha}\right)+\left(\pi^{b}-1\right) y_{n-\beta}=0, \alpha>0, \beta>0
$$

Here $p=2 \pi^{\alpha}>1, \tau(n)=n-\alpha, \sigma(n)=n-\beta$
$q=\pi^{b}-1$, which satisfies (C3), $f_{n}=0$
Here $z_{n}=w_{n}=\pi^{n}>0$ and $w_{n} \rightarrow 0$ as $n \rightarrow \infty$
Clearly $y_{n}=-\pi^{-n}$ is a solution of (10)

This example illustrates Theorem (1 part(a) implies part (b),Theorem (2 part (a) implies part(b) ,Lemma(4) ,(5 (ii)).

None of the known outcomes can be connected to the above cases.

4 Acknowledgment

The Authors are grateful to the unknown referee for his or her supportive remarks to enhance the presentation of the paper.

5 REFERENCES

[1] Ravi P. Agarwal, X.A. Tang and Z.C. Wang, "The existence of positive solutions to neutral differential equations", J. Math. Anal. Appl. 240 (1999), 446-467.
[2] Ravi P. Agarwal, Said R. Grace, D. O'Regan: "Oscillation theory for difference and functional differential equations". Kluwer Academic Publishers, Dordrecht, 2000. Zbl 0954.34002
[3] D. D. Bainov, D. PMishev," Oscillation Theory for Neutral Differential Equation with Delay", English edition, IOP Publishing Ltd 1991.
[4] R. Bellman and K. L. Cooke, "DifferentialDifference Equations", Academic Press, New York, 1963.
[5] E.Thandapani etal, "Oscillatory of first order neutral delay difference equations",Applied Mathematics E-notes 3(2003), 88-94.
[6] E.Thandapani etal, "Oscillatory and asymptotic behavior of solutions of non homogeneous neutral difference equations", Studies of the university of Zilina mathematical series, 15 (2002), 67-82.
[7] B.G.Zhang and H.Wang," The existence of oscillatory and non oscillatory solutions of neutral difference equations", Chinese J. Math. 24 (1996), 377-393
[8] S. K. Rath, "Study of Qualitative behavior of Solutions of Neutral Delay Difference Equations "PhD thesis submitted to Berhampur University August 2010.
[9] R. N. Rath, B. L. S. Barik and S. K. Rath, "Oscillation of higher order neutral functional difference equations with positive and negative coefficients", Mathematica Slovaca, 60(3)(2010), 361-384.
[10] R. N. Rath, and S. K. Rath , "Oscillation and nonOscillation criteria for a Neutral Delay Difference Equation of first order", Fasiculi Mathematici, 42 (2009), 109-120.
[11] R. N. Rath, N. Misra, S. K. Rath, "Sufficient conditions for oscillatory behavior of a first order neutral difference equation with oscillating coefficients", Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis
(AMAPN), 25(1) (2009), 55-63
[12] R. N. Rath and L. N. Padhy; "Necessary and sufficient conditions for oscillation of solutions of a first order forced nonlinear difference equation with several delays", Fascculi Mathematici, 35(2005), 99-113.
[13] R. N. Rath and N. Misra," Necessary and sufficient conditions for oscillatory behavior of solutions of a forced nonlinear neutral equation of first order with positive and negative coefficients", Math. Slovaca, 54 (2004), 255-266.
[14] Ch. G. Philos and I. K. Purnaras, "Asymptotic behavior and stability to linear non-autonomous neutral delay difference equations", J. Differ. Equations Appl., 11 (2005), 503-513.
[15] N. Parhi and A.K. Tripathy, "Oscillation of a class of neutral difference equations of first order",Journal of Difference Equations and Applications, 9(10) (2003), 933-946.
[16] N. Parhi and A. K. Tripathy; "Oscillation of forced nonlinear neutral delay difference equations of first order", Czech. Math. J., 53(2003), 83-101.
[17] N. Parhi and A. K. Tripathy; "On asymptotic behavior and oscillation of forced first order
nonlinear neutral difference equations", Fasc. Math., 32(2001), 83-95.
[18] R. E. Mickens, "Difference Equations", Van Nostrand Reinhold Company Inc., New York, 1987.
[19] S. C. Mallik and S. Arora," Mathematical Analysis", New Age International (P) Ltd. Publishers, New-Delhi, 2001.
[20] I. Gy"ori and G. Ladas; "Oscillation Theory of Delay Differential Equations with Applications", Clarendon Press, Oxford, 1991.
[21] J. G. Dix, Ch. G. Philos and I. K. Purnaras, "Asymptotic properties of solutions to linear nonautonomous neutral differential equations", J. Math. Anal. Appl., 318 (2006), 296-304.
[22] R. P. Agarwal, "Difference Equations and Inequalities", Marcel Dekker, Newyork, 2000.
[23] P.P.Mishra, "Study of Oscillation and NonOscillation in Neutral Delay Differential Equations", PhD thesis submitted to Utkal University January 2009.
[24] Silviu-Iulian Niculescu, Keqin Gu, "Advances in Time-Delay Systems", Springer-Verlag Berlin Heidelberg New York in 2004

Authors

Chittaranjan Behera
Associate Professor
Department of Mathematics
Silicon Institute of Technology
Bhubaneswar,India-751024
Email-crb_sit@yahoo.co.uk
Prayag Prasad Mishra
Associate Professor
Department of Mathematics
Silicon Institute of Technology
Bhubaneswar,India-751024

Radhanath Rath
Ex Professor
Department of Mathematics
Khallikote University
Berhampur,India-760001

